4.7 STANDARD /O INTERFACES

a continuous stream of serial data. An analogous situation occurs in the output path of
the interface.

Because it requires fewer wires. serial transmission is convenient for connecting
devices that are physically far away from the computer. The speed of transmission. often
given as a bir rate, depends on the nature of the devices connected. To accommodate
a range of devices. a serial interface must be able to use a range of clock speeds. The
circuit in Figure 4.37 allows separate clock signals to be used for input and output
operations for increased flexibility.

Because serial interfaces play a vital role in connecting I/0 devices. several widely
used standards have been developed. A standard circuit that includes the features of our
example in Figure 4.37 is known as a Universal Asynchronous Receiver Transmitter
{(UART). It is intended for use with low-speed serial devices. Data transmission is
performed using the asynchronous start-stop format. which we discuss in Chapter 10.
To facilitate connection to communication links. a popular standard known as RS-232-C
was developed. It is also described in Chapter 10.

4.7 STANDARD I/O INTERFACES

The previous sections point out that there are several alternative designs for the bus of
a computer. This variety means that /O devices fitted with an interface circuit suitable
for one computer may not be usable with other computers. A different interface may
have to be designed for every combination of /0 device and computer. resulting in
many different interfaces. The most practical solution is to develop standard intertace
signals and protocols.

It is helpful at this point to understand how a computer system is put together.
A typical personal computer. for example. includes a printed circuit board called the
motherboard. This board houses the processor chip. the main memory. and some /O
interfaces. It also has a few connectors into which additional interfaces can be plugged.

The processor bus is the bus defined by the signals on the processor chip itself.
Devices that require a very high speed connection to the processor, such as the main
memory. may be connected directly to this bus. For electrical reasons. only a few devices
can be connected in this manner. The motherboard usually provides another bus that
can support more devices. The two buses are interconnected by a circuit. which we
will call a bridge. that translates the signals and protocols of one bus into those of
the other. Devices connected to the expansion bus appear to the processor as if they
were connected directly to the processor’s own bus. The only difference is that the
bridge circuit introduces a small delay in data transfers between the processor and
those devices.

It is not possible to define a uniform standard for the processor bus. The structure
of this bus is closely tied to the architecture of the processor. It is also dependent
on the electrical characteristics of the processor chip, such as its clock speed. The
expansion bus is not subject to these limitations. and therefore it can use a standardized
signaling scheme. A number of standards have been developed. Some have evolved by
default. when a particular design became commercially successful. For example. IBM

259

260

CHAPTER 4 + INPUT/OUTPUT ORGANIZATION

developed a bus they called ISA (Industry Standard Architecture) for their personal
computer. known at the time as PC AT. The popularity of that computer led to other
manufacturers producing ISA-compatible interfaces for their /O devices. thus making
ISA into a de facto standard.

Some standards have been developed through industrial cooperative efforts. even
among competing companies driven by their common self-interest in having compatible
products. In some cases. organizations such as the IEEE (Institute of Electrical and
Electronics Engineers), ANSI (American National Standards Institute), or international
bodies such as ISO (International Standards Organization) have blessed these standards
and given them an official status.

In this section. we present three widely used bus standards. PCI (Peripheral Com-
ponent Interconnect). SCSI (Small Computer System Interface). and USB (Universal
Serial Bus). The way these standards are used in a typical computer system is illus-
trated in Figure 4.38. The PCI standard defines an expansion bus on the motherboard.
SCSI and USB are used for connecting additional devices. both inside and outside the

Main
Processor
memory
Processor bus
Bridge
PCI bus
Additional SCSI Ethernet USB ISA
memory controller interface controller interface
SCSI bus
IDE
Video disk
Disk CD-ROM
controller controller
. ik 2 CD-
Disk 1 Disk ROM Keyboard Game

Figure 4.38 An example of a computer system using different interface standards.

4.7 STANDARD IO INTERFACES

computer box. The SCSI bus is a high-speed parallel bus intended for devices such
as disks and video displays. The USB bus uses serial transmission to suit the needs
of equipment ranging from keyboards to game controls to internet connections. The
figure shows an interface circuit that enables devices compatible with the earlier ISA
standard. such as the popular IDE (Integrated Device Electronics) disk. to be connected.
[t also shows a connection to an Ethernet. The Ethernet is a widely used local area net-
work, providing a high-speed connection among computers in a building or a university
campus.

A given computer may use more than one bus standard. A typical Pentium computer
has both a PCI bus and an ISA bus. thus providing the user with a wide range of devices
to choose from.

4.7.1 PERIPHERAL COMPONENT INTERCONNECT (PCI) BUS

The PCI bus [1] is a good example of a system bus that grew out of the need for
standardization. It supports the functions found on a processor bus but in a standardized
format that is independent of any particular processor. Devices connected to the PCl
bus appear to the processor as if they were connected directly to the processor bus.
They are assigned addresses in the memory address space of the processor.

The PCI follows a sequence of bus standards that were used primarily in IBM PCs.
Early PCs used the 8-bit XT bus. whose signals closely mimicked those of Intel’s 80.v86
processors. Later. the 16-bit bus used on the PC AT computers became known as the
ISA bus. Its extended 32-bit version is known as the EISA bus. Other buses developed
in the eighties with similar capabilities are the Microchannel used in IBM PCs and the
NuBus used in Macintosh computers.

The PCI was developed as a low-cost bus that is truly processor independent. Its
design anticipated a rapidly growing demand for bus bandwidth to support high-speed
disks and graphic and video devices. as well as the specialized needs of multiprocessor
systems. As a result. the PCI is still popular as an industry standard almost a decade
after it was first introduced in 1992,

An important feature that the PCI pioneered is a plug-and-play capability for con-
necting 1/0 devices. To connect a new device. the user simply connects the device
interface board to the bus. The software takes care of the rest. We will discuss this
feature after we describe how the PCI bus operates.

Data Transfer

In today’s computers. most memory transfers involve a burst of data rather than
just one word. The reason is that modern processors include a cache memory (see
Figure 1.6). Data are transferred between the cache and the main memory in bursts of
several words each, as we will explain in Chapter 5. The words involved in such a trans-
fer are stored at successive memory locations. When the processor (actually the cache
controller) specifies an address and requests a read operation from the main memory.
the memory responds by sending a sequence of data words starting at that address.
Similarly, during a write operation. the processor sends a memory address followed
by a sequence of data words. to be written in successive memory locations starting

261

262

CHAPTER 4 -+ INPUT/OUTPUT ORGANIZATION

at that address. The PCI is designed primarily to support this mode of operation. A
read or a write operation involving a single word is simply treated as a burst of length
one.

The bus supports three independent address spaces: memory, I/O, and configura-
tion. The first two are self-explanatory. The I/O address space is intended for use with
processors, such as Pentium, that have a separate I/O address space. However, as noted
in Chapter 3, the system designer may choose to use memory-mapped I/O even when
a separate 1/0 address space is available. In fact, this is the approach recommended by
the PCI standard for wider compatibility. The configuration space is intended to give
the PCI its plug-and-play capability, as we will explain shortly. A 4-bit command that
accompanies the address identifies which of the three spaces is being used in a given
data transfer operation.

Figure 4.38 shows the main memory of the computer connected directly to the
processor bus. An alternative arrangement that is used often with the PCI bus is shown
in Figure 4.39. The PCI bridge provides a separate physical connection for the main
memory. For electrical reasons, the bus may be further divided into segments connected
via bridges. However, regardless of which bus segment a device is connected to, it may
still be mapped into the processor’s memory address space.

The signaling convention on the PCI bus is similar to the one used in Figure 4.25.
In that figure, we assumed that the master maintains the address information on the
bus until data transfer is completed. But, this is not necessary. The address is needed
only long enough for the slave to be selected. The slave can store the address in its
internal buffer. Thus, the address is needed on the bus for one clock cycle only, freeing
the address lines to be used for sending data in subsequent clock cycles. The result is

Host

Main

PCI bridge }—
memory

PCI bus

Ethernet

Disk Printer .
interface

Figure 4.39 Use of a PCl bus in a computer system.

4.7 STANDARD VO INTERFACES

Table 4.3 Data transfer signals on the PCl bus.

Name Function

CLK A 33-MHz or 66-MHz clock.

FRAME# Sent by the initiator to indicate the duration of a transaction.
AD 32 address/data lines, which may be optionally increased to 64.
C/BE# 4 command/byle-enable lines (8 for a 64-bit bus).

IRDY#, TRDY# Initiator-ready and Target-ready signals.

DEVSEL# A response from the device indicating that it has recognized

its address and is ready for a data transfer transaction.

IDSEL# Initialization Device Select.

a significant cost reduction because the number of wires on a bus is an important cost
factor. This approach is used in the PCI bus.

At any given time. one device is the bus master. It has the right to initiate data
transfers by issuing read and write commands. A master is called an initiator in PCI
terminology. This is either a processor or a DMA controller. The addressed device that
responds to read and write commands is called a rarget.

To understand the operation of the bus and its various features. we will examine
a typical bus transaction. The main bus signals used for transferring data are listed in
Table 4.3. Signals whose name ends with the symbol # are asserted when in the low-
voltage state. The main difference between the PCI protocol and Figure 4.25 is that in
addition to a Target-ready signal, PCT also uses an Initiator-ready signal. IRDY#. The
Jatter is needed to support burst transfers.

Consider a bus transaction in which the processor reads four 32-bit words from
the memory. In this case. the initiator is the processor and the target is the memory.
A complete transfer operation on the bus. involving an address and a burst of data. 1s
called a rransaction. Individual word transfers within a transaction are called phases.
The sequence of events on the bus is shown in Figure 4.40. A clock signal provides
the timing reference used to coordinate different phases of a transaction. All signal
transitions are triggered by the rising edge of the clock. As in the case of Figure 4.25.
we show the signals changing later in the clock cycle to indicate the delays they en-
counter.

In clock cycle 1. the processor asserts FRAME# to indicate the beginning of a
transaction. At the same time. it sends the address on the AD lines and a command
on the C/BE# lines. In this case. the command will indicate that a read operation is
requested and that the memory address space is being used.

Clock cycle 2 is used to turn the AD bus lines around. The processor removes the
address and disconnects its drivers from the AD lines. The selected target enables its
drivers on the AD lines. and fetches the requested data to be placed on the bus during
clock cycle 3. It asserts DEVSEL# and maintains it in the asserted state until the end
of the transaction.

263

264

CHAPTER 4 -« INPUT/OUTPUT ORGANIZATION

ax LI LT LI LI LI I

Framc# I |

ap X Ao —— 5 X X o X H
C/BE# ——(Cmnd X Byte enable)——

IRDY# |

TRDY# I

DEVSEL# 1 | B

Figure 4.40 A read operation on the PCl bus.

The C/BE# lines, which were used to send a bus command in clock cycle 1. are
used for a different purpose during the rest of the transaction. Each of these four lines
is associated with one byte on the AD lines. The initiator sets one or more of the C/BE#
lines to indicate which byte lines are to be used for transferring data. Assuming that
the target is capable of transferring 32 bits at a time, all four C/BE# lines are asserted.

During clock cycle 3. the initiator asserts the initiator ready signal, IRDY#, to
indicate that it is ready to receive data. If the target has data ready to send at this time.
it asserts target ready. TRDY#. and sends a word of data. The initiator loads the data
into its input buffer at the end of the clock cycle. The target sends three more words of
data in clock cycles 4 to 6.

The initiator uses the FRAME# signal to indicate the duration of the burst. [t negates
this signal during the second last word of the transfer. Since it wishes to read four words.
the initiator negates FRAME# during clock cycle 5. the cycle in which it receives the
third word. After sending the fourth word in clock cycle 6. the target disconnects its
drivers and negates DEVSEL# at the beginning of clock cycle 7.

Figure 4.41 gives an example of a more general input transaction. It shows how
the IRDY# and TRDY# signals can be used by the initiator and target, respectively. 1o
indicate a pause in the middle of a transaction. The read operation starts the same way
as in Figure 4.40. and the first two words are transferred. The target sends the third

4.7 STANDARD l/O INTERFACES

265

ax — L1 L b 4 1 L1 b

-

Frame# —I |

Ay — 1 adres ——— #11 X1 X #3

#4

C/BE# (Cmnd X Byte enable

IRDY# I I]

TRDY# l l_ _—l

DEVSEL# I

11177

Figure 4.41 A read operation showing the role of IRDY#/TRDY#.

word in cycle 5. However. we assume that the initiator is not able to receive it. Hence.
it negates IRDY#. In response. the target maintains the third data word on the AD lines
until IRDY# is asserted again. In cycle 6. the initiator asserts IRDY# and loads the data
into its input butfer at the end of the clock cycle. At this point. we assume that the target
is not ready to transfer the fourth word immediately; hence. it negates TRDY# at the
beginning of cycle 7. In cycle 8. it sends the fourth word and asserts TRDY#. Since
Frame# was negated with the third data word. the transaction ends after the fourth word
has been transferred.

Device Configuration

When an /O device is connected to a computer, several actions are needed to
contigure both the device and the software that communicates with it. A typical device
interface card for an ISA bus. for example. has a number of jumpers or switches that
have to be set by the user to select certain options. Once the device is connected, the
software needs to know the address of the device. It may also need to know relevant
device characteristics. such as the speed of the transmission link, whether parity bits
are used, and so on.

The PCI simplifies this process by incorporating in each I/O device interface a small
configuration ROM memory that stores information about that device. The configura-
tion ROMs of all devices are accessible in the configuration address space. The PCI

266

CHAPTER 4 -+ INPUT/OUTPUT ORGANIZATION

initialization software reads these ROMs whenever the system is powered up or reset. In
cachcase, itdetermines whether the device is a printer. a keyboard, an Ethernet interface,
or adisk controller. It can turther learn about various device options and characteristics.

Devices are assigned addresses during the initialization process. This means that
during the bus configuration operation, devices cannot be accessed based on their
address. as they have not yet been assigned one. Hence. the configuration address
space uses a different mechanism. Each device has an input signal called Initialization
Device Select. IDSEL#. During a configuration operation, it is this signal. rather than
the address applied to the AD inputs of the device. that causes the device to be selected.
The motherboard in which device connectors are plugged typically has the IDSEL# pin
of cach device connected to one of the upper 21 address lines. AD11 10 AD31. Hence. a
device can be selected for a configuration operation by issuing a configuration command
and an address in which the corresponding AD line is set to | and the remaining 20
lines set o 0. The lower address lines. AD10 to ADOO. are used to specify the type of
operation and to access the contents of the device configuration ROM. This arrangement
limits the number of I/0 devices to 21.

The configuration software scans all 21 locations in the configuration address space
to identify which devices are present. Each device may request an address in the 1/0
space or in the memory space. The device is then assigned an address by writing that
address into the appropriate device register. The configuration software also sets such
parameters as the device interrupt priority. The PCI bus has four interrupt-request lines.
By writing into a device configuration register. the software instructs the device as 10
which of these lines it can use to request an interrupt. If a device requires initialization.
the initialization code is stored in @ ROM in the device interface. (This is a different
ROM f{rom that used in the configuration process.) The PCI software reads this code
and executes it to perform the required initialization.

This process relieves the user from having to be involved in the configuration
process. The user simply plugs in the interface board and turns on the power. The
software does the rest. The device is ready to use.

The PCI bus has gained great popularity in the PC world. It is also used in many
other computers. such as SUNs. to benefit from the wide range of I/0 devices for which
a PCl interface is available. In the case of some processors. such as the Compaqg Alpha.
the PCl-processor bridge circuit 1s built on the processor chip itself. further simplifying
system design and packaging.

Electrical Characteristics

The PCI bus has been defined for operation with either a 5- or 3.3-V power supply.
The motherboard may be designed to operate with either signaling system. Connectors
onexpansion boards are designed to ensure that they can be plugged only in a compatible
motherboard.

4.7.2 SCSIBuUS

The acronym SCSI stands for Small Computer System Interface. It refers to a standard
bus defined by the American National Standards Institute (ANSI) under the designation
X3.131 [2]. In the original specifications of the standard. devices such as disks are

4.7 STANDARD I/O INTERFACES

connected to a computer via a 50-wire cable, which can be up to 25 meters in length
and can transfer data at rates up to 5 megabytes/s.

The SCSI bus standard has undergone many revisions, and its data transfer capa-
bility has increased very rapidly, almost doubling every two years. SCSI-2 and SCSI-3
have been defined, and each has several options. A SCSI bus may have eight data lines,
in which case it is called a narrow bus and transfers data one byte at a time. Alternatively,
a wide SCSI bus has 16 data lines and transfers data 16 bits at a time. There are also
several options for the electrical signaling scheme used. The bus may use single-ended
transmission (SE), where each signal uses one wire, with a common ground return for
all signals. In another option, differential signaling is used, where a separate return wire
is provided for each signal. In this case, two voltage levels are possible. Earlier versions
use 5 V (TTL levels) and are known as High Voltage Differential (HVD). More recently,
a 3.3 V version has been introduced and is known as Low Voitage Differential (LVD).

Because of these various options, the SCSI connector may have 50, 68, or 80 pins.
The maximum transfer rate in commercial devices that are currently available varies
from 5 megabytes/s to 160 megabytes/s. The most recent version of the standard is
intended to support transfer rates up to 320 megabytes/s. and 640 megabytes/s is antic-
ipated a little later. The maximum transfer rate on a given bus is often a function of the
length of the cable and the number of devices connected. with higher rates for a shorter
cable and fewer devices. To achieve the top data transfer rate, the bus length is typically
limited to 1.6 m for SE signaling and 12 m for LVD signaling. However, manufactur-
ers often provide special bus expanders to connect devices that are farther away. The
maximum capacity of the bus is 8 devices for a narrow bus and 16 devices for a wide bus.

Devices connected to the SCSI bus are not part of the address space of the processor
in the same way as devices connected to the processor bus. The SCSI bus is connected
to the processor bus through a SCSI controller, as shown in Figure 4.38. This controller
uses DMA to transfer data packets from the main memory to the device. or vice versa.
A packet may contain a block of data, commands from the processor to the device, or
status information about the device.

To illustrate the operation of the SCS1 bus, let us consider how it may be used with a
disk drive. Communication with a disk drive differs substantially from communication
with the main memory. As described in Chapter 5, data are stored on a disk in blocks
called sectors, where each sector may contain several hundred bytes. These data may
not necessarily be stored in contiguous sectors. Some sectors may already contain pre-
viously stored data; others may be defective and must be skipped. Hence, a read or write
request may result in accessing several disk sectors that are not necessarily contiguous.
Because of the constraints of the mechanical motion of the disk, there is a long delay,
on the order of several milliseconds, before reaching the first sector to or from which
data are to be transferred. Then, a burst of data are transferred at high speed. Another
delay may ensue, followed by a burst of data. A single read or write request may involve
several such bursts. The SCSI protocol is designed to facilitate this mode of operation.

A controller connected to a SCSI bus is one of two types — an initiator or a
target. An initiator has the ability to select a particular target and to send commands
specifying the operations to be performed. Clearly, the controller on the processor side,
such as the SCSI controller in Figure 4.38, must be able to operate as an initiator.
The disk controller operates as a target. It carries out the commands it receives from
the initiator. The initiator establishes a logical connection with the intended target.

267

268

CHAPTER 4 ¢« INPUT/OUTPUT ORGANIZATION

Once this connection has been established, it can be suspended and restored as needed
to transfer commands and bursts of data. While a particular connection is suspended,
other devices can use the bus to transfer information. This ability to overlap data transfer
requests is one of the key features of the SCSI bus that leads to its high performance.

Data transfers on the SCSI bus are always controlled by the target controller. To
send a command to a target, an initiator requests control of the bus and, after winning
arbitration, selects the controller it wants to communicate with and hands control of the
bus over to it. Then the controller starts a data transfer operation to receive a command
from the initiator.

Let us examine a complete disk read operation as an example. In this discussion,
even though we refer to the initiator controller as taking certain actions, it should be
clear that it performs these actions after receiving appropriate commands from the
processor. Assume that the processor wishes to read a block of data from a disk drive
and that these data are stored in two disk sectors that are not contiguous. The processor
sends a command to the SCSI controller, which causes the following sequence of events
to take place:

1. The SCSI controller, acting as an initiator, contends for control of the bus.

2. When the initiator wins the arbitration process, it selects the target controller
and hands over control of the bus to it.

3. The target starts an output operation (from initiator to target); in response to
this, the initiator sends a command specifying the required read operation.

4. The target, realizing that it first needs to perform a disk seek operation, sends
a message to the initiator indicating that it will temporarily suspend the connection
between them. Then it releases the bus.

5. The target controller sends a command to the disk drive to move the read head
to the first sector involved in the requested read operation. Then, it reads the data stored
in that sector and stores them in a data buffer. When it is ready to begin transferring
data to the initiator, the target requests control of the bus. After it wins arbitration, it
reselects the initiator controller, thus restoring the suspended connection.

6. The target transfers the contents of the data buffer to the initiator and then
suspends the connection again. Data are transferred either 8 or 16 bits in parallel.
depending on the width of the bus.

7. The target controller sends a command to the disk drive to perform another seek
operation. Then, it transfers the contents of the second disk sector to the initiator, as
before. At the end of this transfer, the logical connection between the two controllers
is terminated.

8. As the initiator controller receives the data, it stores them into the main memory
using the DMA approach.

9. The SCSI controller sends an interrupt to the processor to inform it that the
requested operation has been completed.

This scenario shows that the messages exchanged over the SCSI bus are at a higher
level than those exchanged over the processor bus. In this context, a “higher level”
means that the messages refer to operations that may require several steps to complete,
depending on the device. Neither the processor nor the SCSI controller need be aware
of the details of operation of the particular device involved in a data transfer. In the
preceding example, the processor need not be involved in the disk seek operations.

4.7 STANDARD VO INTERFACES

The SCSI bus standard defines a wide range of control messages that can be ex-
changed between the controllers to handle different types of /O devices. Messages
are also defined to deal with various error or failure conditions that might arise during
device operation or data transfer.

Bus Signals

We now describe the operation of the SCSI bus from the hardware point of view.
The bus signals are summarized in Table 4.4. For simplicity we show the signals for
a narrow bus (8 data lines). Note that all signal names are preceded by a minus sign.
This indicates that the signals are active. or that a data line is equal to 1, when they are
in the low-voltage state. The bus has no address lines. Instead. the data lines are used
to identify the bus controllers involved during the selection or reselection process and
during bus arbitration. For a narrow bus. there are eight possible controllers. numbered
0 through 7. and each is associated with the data line that has the same number. A
wide bus accommodates up to 16 controllers. A controller places its own address or
the address of another controller on the bus by activating the corresponding data line.
Thus, it is possible to have more than one address on the bus at the same time, as in
the arbitration process we describe next. Once a connection is established between two

Table 4.4 The SCSI bus signals

Category Name Function

Data —-DB(0) to —DB(7) Data tines: Carry one byte of information during the
information transfer phase and identify device during
arbitration, selection and resclection phases

—DB(P) Parity bit for the data bus
Phase —BSY Busy: Asserted when the bus is not free
—SEL Selection: Asserted during selection and reselection
Information type -C/D Control/Data: Asserted during transfer of control
information (command. status or message)
—MSG Message: indicates that the information being

transferred is a message

Handshake —-REQ Request: Asserted by a target to request a data
transfer cycle
—ACK Acknowledge: Asserted by the initiator when it has

completed a data transfer operation

Direction of transfer -1/0 Input/Output: ~ Asserted to indicate an input operation
(relative to the initiator)

Other —~ATN Attention: Asserted by an initiator when it wishes to
send a message to a target
~RST Reset: Causcs all device controls to disconnect from

the bus and assume their start-up state

269

270

CHAPTER 4 -+ INPUT/OUTPUT ORGANIZATION

controllers. there is no further need for addressing. and the data lines are used to carry
data.

The main phases involved in the operation of the SCSI bus are arbitration, selection,
information transfer. and reselection. We now examine each of these phases.

Arbitration

The bus is {free when the —BSY signal is in the inactive (high-voltage) state. Any
controller can request the use of the bus while it is in this state. Since two or more
controllers may generate such a request at the same time, an arbitration scheme must
be implemented. A controller requests the bus by asserting the —BSY signal and by
asserting its associated data line to identify itself. The SCSI bus uses a simple distributed
arbitration scheme. It is llustrated by the example in Figure 4.42. in which controllers
2 and 6 request the use of the bus simultaneously.

Each controller on the bus is assigned a fixed priority. with controller 7 having the
highest priority. When —BSY becomes active. all controllers that are requesting the
bus examine the data lines and determine whether a higher-priority device is requesting
the bus at the same time. The controller using the highest-numbered line realizes that it
has won the arbitration process. All other controllers disconnect from the bus and wait
for —BSY to become inactive again.

In Figure 4.42, we have assumed that controller 6 is an initiator that wishes to
establish a connection to controller 5. After winning arbitration. controller 6 proceeds
to the selection phase. in which it identifies the target.

Targets examine 1D

DB2

DB5 [
DB6 B
BSY L
SEL [

Free Arbitration Selection

Figure 4.42 Arbitration and selection on the SCSI bus. Device 6 wins arbitration
and selects device 2.

4.7 STANDARD VO INTERFACES

Selection

Having won arbitration, controller 6 continues to assert —BSY and —DB6 (its
address). It indicates that it wishes to select controller 5 by asserting the —SEL and
then the —DBS lines. Any other controller that may have been involved in the arbitration
phase. such as controller 2 in the figure. must stop driving the data lines once the —SEL
line becomes active. if it has not already done so. After placing the address of the target
controller on the bus. the initiator releases the —~BSY line.

The selected target controiler responds by asserting —BSY. This informs the initia-
tor that the connection it is requesting has been established. so that it may remove the
address information from the data lines. The selection process is now complete, and
the target controller (controller 5) is asserting --BSY. From this point on. controller 5
has control of the bus. as required for the information transfer phase.

Information Transfer

The information transferred between two controllers may consist of commands
from the initiator to the target. status responses from the target to the initiator, or data
being transferred to or from the I/O device. Handshake signaling is used to control
information transfers in the same manner as described in Section <.5.2. with the target
controller taking the role of the bus master. The —REQ and —ACK signals replace
the Master-ready and Slave-ready signals in Figures 4.26 and 4.27. The target asserts
—1/0 during an input operation (target to initiator). and it asserts —C/D to indicate that
the information being transferred is either a command or a status response rather than
data.

We should point out that high-speed versions of the SCSI bus use a technique
known as double-edge clocking or Double Transitions (DT). In Figures 4.26 and .27,
each data transfer requires a high-to-low transition followed by a low-to-high transi-
tion on the two handshake signals. Double-edge clocking means that data are trans-
ferred on both the rising and falling edges of these signals. thus doubling the transfer
rate.

At the end of the transfer. the target controller releases the —BSY signal. thus
frecing the bus for use by other devices. Later. it may reestablish the connection to the
initiator controller when it is ready to transfer more data. This is done in the reselection
operation described next.

Reselection

When a logical connection is suspended and the target is ready to restore it, the
target must first gain control of the bus. It starts an arbitration cycle. and after winning
arbitration. it selects the initiator controller in exactly the same manner as described
above. But with the roles of the target and initiator reversed. the imtiator is now asserting
~BSY. Before data transfer can begin. the initiator must hand control over to the target.
This is achieved by having the target controller assert —BSY after selecting the initiator.
Meanwhile. the initiator waits for a short period after being selected to make sure that
the target has asserted —BSY. and then it releases the —BSY line. The connection
between the two controllers has now been reestablished. with the target in control of
the bus as required for data transfer to proceed.

271

272

CHAPTER 4 -+ INPUT/OUTPUT ORGANIZATION

The bus signaling scheme described above provides the mechanisms needed for two
controllers to establish a logical connection and exchange messages. The connection
may be suspended and reestablished at any time. The SCSI standard defines the structure
and contents of various types of packets that the controllers exchange to handle different
situations. The initiator uses these packets to send the commands it receives from the
processor to the target. The target responds with status information. and data transfer
operations. The latter are controlled by the target. because it is the target that knows
when data are available. when to suspend and reestablish connections. etc.

Additional information on the SCSI bus and various SCSI products is available on
the web from the standards committee [2].

4.7.3 UNIVERSAL SERIAL Bus (USB)

The synergy between computers and communications is at the heart of today’s infor-
mation technology revolution. A modern computer system is likely to involve a wide
variety of devices such as keyboards. microphones. cameras. speakers. and display de-
vices. Most computers also have a wired or wireless connection to the Internet. A key
requirement in such an environment is the availability of a simple. low-cost mechanism
to connect these devices to the computer. and an important recent development in this
regard is the introduction of the Universal Serial Bus (USB) [3]. This is an industry
standard developed through a collaborative effort of several computer and communica-
tions companies. including Compaq. Hewlett-Packard. Intel, Lucent. Microsoft. Nortel
Networks. and Philips.

The USB supports two speeds of operation. called low-speed (1.5 megabits/s) and
full-speed (12 megabits/s). The most recent revision of the bus specification (USB 2.0)
introduced a third speed of operation. called high-speed (480 megabits/s). The USB is
quickly gaining acceptance in the market place. and with the addition of the high-speed
capability it may well become the interconnection method of choice for most computer
devices.

The USB has been designed to meet several key objectives:

* Provide a simple. low-cost, and easy to use interconnection system that overcomes
the difficultics due to the limited number of VO ports available on a computer

* Accommodate a wide range of data transfer characteristics for /0 devices. includ-
ing telephone and Internet connections

* Enhance user convenience through a “plug-and-play™ mode of operation
We will elaborate on these objectives before discussing the technical details of the USB.

Port Limitation

The parallel and serial ports described in Section 4.6 provide a general-purpose
point of connection through which a variety of fow- to medium-speed devices can be
connected to a computer. For practical reasons. only a few such ports are provided in a
typical computer. To add new ports, a user must open the computer box to gain access
to the internal expansion bus and install a new interface card. The user may also need to

4.7 STANDARD VO INTERFACES

know how to configure the device and the software. An objective of the USB is to make
it possible to add many devices to a computer system at any time. without opening the
computer box.

Device Characteristics

The kinds of devices that may be connected to a computer cover a wide range of

functionality. The speed. volume. and timing constraints associated with data transfers
to and from such devices vary significantly.

In the case of a keyboard. one byte of data is generated every time a key is pressed.
which may happen at any time. These data should be transferred to the computer
promptly. Since the event of pressing a key is not synchronized to any other event
in a computer system. the data generated by the keyboard are called asyvnclironous.
Furthermore. the rate at which the data are generated is quite Tow. It is limited by the
speed of the human operator to about 100 bytes per second. which is fess than 1000 bits
per second.

A variety of simple devices that may be attached to a computer generate data of

a similar nature — low speed and asynchronous. Computer mice and the controls and
manipulators used with video games are good examples.

Let us consider a different source of data. Many computers have a microphone
cither externally attached or built in. The sound picked up by the microphone produces
an analog electrical signal. which must be converted into a digital form before it can be
handled by the computer. This is accomplished by sampling the analog signal periodi-
cally. For each sample. an analog-to-digital (A/D) converter generates an n-bit number
representing the magnitude of the sample. The number of bits. n1. is selected based on
the desired precision with which to represent each sample. Later. when these data are
sent to a speaker. a digital-to-analog (D/A) converter is used to restore the original
analog signal from the digital format.

The sampling process yields a continuous stream of digitized samples that ar-
rive at regular intervals, synchronized with the sampling clock. Such a data stream 1s

called isochronons, meaning that successive events are separated by equal periods of

time.

A signal must be sampled quickly enough to track its highest-frequency compo-
nents. In general. if the sampling rate is s samples per second. the maximum frequency
component that will be captured by the sampling process is /2. For example. human
speech can be captured adequately with a sampling rate of 8 kHz. which will record
sound signals having frequencies up to 4 kHz. For a higher-quality sound. as needed
in a music system. higher sampling rates are used. A standard rate for digital sound is
44.1 kHz. Each sample is represented by 4 bytes of data to accommodate the wide range
in sound volume (dynamic range) that is necessary for high-quality sound reproduction.
This yields a data rate of about .4 megabits/s.

An important requirement in dealing with sampled voice or music is to maintain
precise timing in the sampling and replay processes. A high degree of jitter (variability
in sample timing) is unacceptable. Hence. the data transfer mechanism between a
computer and a music system must maintain consistent delays from one sample to
the next. Otherwise, complex buffering and retiming circuitry would be needed. On
the other hand. occasional errors or missed samples can be tolerated. They either go

273

274

CHAPTER 4 +« INPUT/OUTPUT ORGANIZATION

unnoticed by the listener or they may cause an unobtrusive click. No sophisticated
mechanisms are needed to ensure perfectly correct data delivery.

Data transfers for images and video have similar requirements. but at much higher
data transfer bandwidth. The term bandwidth refers to the total data transfer capacity
of a communications channel. measured in a suitable unit such as bits or bytes per
second. To maintain the picture quality of commercial television, an image should
be represented by about 160 kilobytes and transmitted 30 times per second, for a total
bandwidth of 44 megabits/s. Higher-quality images, as in HDTV (High Definition TV).
require higher rates.

Large storage devices such as hard disks and CD-ROMs present different require-
ments. These devices are part of the computer’s memory hierarchy, as will be discussed
in Chapter 5. Their connection to the computer must provide a data transfer bandwidth
of at least 40 or 50 megabits/s. Delays on the order of a millisecond are introduced by
the disk mechanism. Hence, a small additional delay introduced while transferring data
to or from the computer is not important. and jitter is not an issue.

Plug-and-Play

As computers become part of everyday life, their existence should become increas-
ingly transparent. For example, when operating a home theater system. which includes
at least one computer, the user should not find it necessary to turn the computer off or
to restart the system to connect or disconnect a device.

The plug-and-play feature means that a new device. such as an additional speaker.
can be connected at any time while the system is operating. The system should detect the
existence of this new device automatically. identify the appropriate device-driver soft-
ware and any other facilities needed to service that device, and establish the appropriate
addresses and logical connections to enable them to communicate.

The plug-and-play requirement has many implications at all levels in the system,
from the hardware to the operating system and the applications software. One of the pri-
mary objectives of the design of the USB has been to provide a plug-and-play capability.

USB Architecture

The discussion above points to the need for an interconnection system that combines
low cost. flexibility. and high data-transfer bandwidth. Also, I/0 devices may be located
at some distance from the computer to which they are connected. The requirement for
high bandwidth would normally suggest a wide bus that carries 8. 16. or more bits
in parallel. However. a large number of wires increases cost and complexity and is
inconvenient to the user. Also. it is difficult to design a wide bus that carries data for a
long distance because of the data skew problem discussed in Section 4.5.2. The amount
of skew increases with distance and limits the data rate that can be used.

A serial transmission format has been chosen for the USB because a serial bus
satisfies the low-cost and flexibility requirements. Clock and data information are en-
coded together and transmitted as a single signal. Hence. there are no limitations on
clock frequency or distance arising from data skew. Therefore. it is possible to provide
a high data transter bandwidth by using a high clock frequency. As pointed out earlier.
the USB offers three bit rates, ranging from 1.5 to 480 megabits/s, to suit the needs of
different I/O devices.

4.7 STANDARD I/O INTERFACES

Host computer

1/0 1/0 1/0 170
device device device device

1/0 1/0
device device

Figure 4.43 Universal Serial Bus tree structure.

To accommodate a large number of devices that can be added or removed at any
time. the USB has the tree structure shown in Figure 4.43. Each node of the tree has
a device called a hub, which acts as an intermediate control point between the host
and the I/O devices. At the root of the tree, a roor hub connects the entire tree to the
host computer. The leaves of the tree are the I/O devices being served (for example.
keyboard. Internet connection. speaker. or digital TV). which are called functions in
USB terminology. For consistency with the rest of the discussion in the book., we will
refer to these devices as 1/O devices.

The tree structure enables many devices to be connected while using only simple
point-to-point serial links. Each hub has a number of ports where devices may be
connected. including other hubs. In normal operation, a hub copies a message that it
receives from its upstream connection to all its downstream ports. As aresult. a message
sent by the host computer is broadcast to all I/O) devices. but only the addressed device

275

276

CHAPTER 4 « INPUT/OUTPUT ORGANIZATION

will respond to that message. In this respect, the USB functions in the same way as the
bus in Figure 4.1. However. unlike the bus in Figure 4.1. a message from an I/O device
is sent only upstream towards the root of the tree and is not seen by other devices.
Hence. the USB enables the host to communicate with the I/O devices. but it does not
enable these devices to communicate with each other.

Note how the tree structure helps meet the USB’s design objectives. The tree makes
it possible to connect a large number of devices to a computer through a few ports (the
root hub). At the same time. each I/0 device is connected through a serial point-to-point
connection. This is an important consideration in facilitating the plug-and-play feature.
as we will see shortly. Also. because of electrical transmission considerations. serial data
transmission on such a connection is much easier than parallel transmission on buses of
the torm represented in Figure 4.1. Much higher data rates and longer cables can be used.

The USB operates strictly on the basis of polling. A device may send a message
only in response to a poll message from the host. Hence. upstream messages do not
encounter conflicts or interfere with each other, as no two devices can send messages
at the same time. This restriction allows hubs to be simple. low-cost devices.

The mode of operation described above is observed for all devices operating at
either low speed or full speed. However. one exception has been necessitated by the
introduction of high-speed operation in USB version 2.0. Consider the situation in
Figure 4.44. Hub A is connected to the root hub by a high-speed link. This hub serves

Host computer

HS

HS — High speed
F/LS — Full/Low speed

Device Device

C D

Figure 4.44 Split bus operation.

4.7 STANDARD /O INTERFACES

one high-speed device. C, and one low-speed device. D. Normally. a message to device
D would be sent at low speed from the root hub. At 1.5 megabits/s. even a short
message takes several tens of microseconds. For the duration of this message. no other
data transfers can take place. thus reducing the effectiveness of the high-speed links
and introducing unacceptable delays for high-speed devices. To mitigate this problem,
the USB protocol requires that a message transmitted on a high-speed link is always
transmitted at high speed. even when the ultimate receiver is a low-speed device. Hence.
a message intended for device D is sent at high speed from the root hub to hub A then
forwarded at low speed to device D. The latter transfer will take a long time. during
which high-speed trattic to other nodes is allowed to continue. For example. the root hub
may exchange several messages with device C while the low-speed message s being
sent from hub A to device D. During this period. the bus is said to be split between
high-speed and low-speed traffic. The message to device D is preceded and followed
by special commands to hub A to start and end the split-traffic mode of operation.
respectively.

The USB standard specifies the hardware details of USB interconnections as well
as the organization and requirements of the host software. The purpose of the USB
software is to provide bidirectional communication links between application software
and /O devices. These links are called pipes. Any data entering at one end of a pipe
is delivered at the other end. Issues such as addressing. timing. or error detection and
recovery are handled by the USB protocols.

We mentioned in Section +.2.6 that the software that transters data to or from a
aiven 1/0 device is called the device driver for that device. The device drivers depend
on the characteristics of the devices they support. Hence. a more precise description
of the USB pipe is that it connects an [/O device to its device driver. It is established
when a device is connected and assigned a unique address by the USB software. Once
established. data may flow through the pipe at any time.

We will now examine how devices are addressed on the USB. Then we will discuss
the various ways in which data transfer can take place.

Addressing

In carlier discussions of input and output operations. we explained that /O devices
are normally identified by assigning them a unique memory address. In fact, a device
usually has several addressable locations to enable the software to send and receive
control and status information and to transfer data.

When a USB is connected to a host computer. its root hub is attached to the
processor bus. where it appears as a single device. The host software communicates
with individual devices attached to the USB by sending packets of information. which
the root hub forwards to the appropriate device in the USB tree.

Each device on the USB. whether it is a hub or an I/O device. is assigned a 7-bit
address. This address is local to the USB tree and is not related in any way to the
addresses used on the processor bus. A hub may have any number of devices or other
hubs connected to it. and addresses are assigned arbitrarily. When a device is first
connected to a hub. or when it is powered on. it has the address 0. The hardware of the
hub to which this device is connected is capable of detecting that the device has been
connected. and it records this fact as part of its own status information. Periodically,
the host polls each hub to collect status information and learn about new devices that

277

278

CHAPTER 4 -+ INPUT/OUTPUT ORGANIZATION

may have been added or disconnected. When the host is informed that a new device
has been connected. it uses a sequence of commands to send a reset signal on the
corresponding hub port, read information from the device about its capabilities. send
configuration information to the device. and assign the device a unique USB address.
Once this sequence is completed the device begins normal operation and responds only
to the new address.

The initial connection procedure just described is a key feature that helps give
the USB its plug-and-play capability. The host software is in complete control of the
procedure. It is able to sense that a device has been connected. to read information
about the device. which is typically stored in a small read-only memory in the device
hardware. to send commands that will configure the device by enabling or disabling
certain features or capabilities, and finally to assign a unique USB address to the device.
The only action required from the user is to plug the device into a hub port and to turn
on its power switch

When a device is powered off, a similar procedure is followed. The correspond-
ing hub reports this fact to the USB system software. which in turn updates its tables.
Of course. if the device that has been disconnected is itself a hub. all devices con-
nected through that hub must also be recorded as disconnected. The USB software
must maintain a complete picture of the bus topology and the connected devices at all
times.

Locations in the device to or from which data transfer can take place. such as
status. control, and data registers. are called endpoints. They are identitied by a 4-bit
number. Actually. each 4-bit value identifics a pair of endpoints. one for input and one
for output. Thus. a device may have up to 16 input/output pairs of endpoints. A USB
pipe. which is a bidirectional data transfer channel. is connected to one such pair. The
pipe connected to endpoints number 0 exists all the time. including immediately after a
device is powered on or reset. This is the control pipe that the USB software uses in the
power-on procedure. As part of that procedure. other pipes using other endpoint pairs
may be established, depending on the needs and complexity of the device. The 4-bit
endpoint number is part of the addressing information sent by the host. as we will see
shortly.

USB Protocols

All information transferred over the USB is organized in packets. where a packet
consists of one or more bytes of information. There are many types of packets that
perform a variety of control functions. We illustrate the operation of the USB by giving
a tew examples of the key packet types and show how they are used.

The information transferred on the USB can be divided into two broad categories:
control and data. Control packets perform such tasks as addressing a device to initiate
data transfer. acknowledging that data have been received correctly, or indicating an
error. Data packets carry information that is delivered to a device. For example. input
and output data are transferred inside data packets.

A packet consists of one or more fields containing different kinds of information.
The first field of any packet is called the packet identifier. PID. which identifies the type
of that packet. There are four bits of information in this field. but they are transmitted
twice. The first time they are sent with their true values, and the second time with each

4.7 STANDARD VO INTERFACES

PID, | PID, | PID | PID, | PID, | PID, | PID, | PID;

(a) Packet identifier field

Bits 8 7 4 N

, PID ADDR ENDP | T®RCI6

(b) Token packet, IN or QUT

Bits 8 0t K192 16

PID DATA CRCI16

(c) Data packet

Figure 4.45 USB packet formats.

bit complemented. as shown in Figure 4.45¢. This enables the receiving device to verify
that the PID byte has been received correctly.

The four PID bits identify one of 16 different packet types. Some control packets.
such as ACK (Acknowledge). consist only of the PID byte. Control packets used for
controlling data transfer operations are called token packets. They have the format
shown in Figure 4.45b. A token packet starts with the PID field. using one of two PID
values to distinguish between an IN packet and an OUT packet. which control input and
output transfers. respectively. The PID field is followed by the 7-bit address of a device
and the 4-bit endpoint number within that device. The packet ends with 5 bits for error
checking. using a method called cyclic redundancy check (CRC). The CRC bits are
computed based on the contents of the address and endpoint fields. By performing an
inverse computation, the receiving device can determine whether the packet has been
received correctly.

Data packets. which carry input and output data. have the format shown in Fig-
ure 4.45¢. The packet identifier field is followed by up to 8192 bits of data, then 16
error-checking bits. Three different PID patterns are used to identify data packets. o
that data packets may be numbered 0. 1. or 2. Note that data packets do not carry a

279

280

Time

CHAPTER 4

o INPUT/OUTPUT ORGANIZATION

Host

Token

Data®}

Token

Datal

\/

Token

Datal)

Vi
Vi

Token
Datal

Hub

ACK

\/

ACK

Figure 4.46 An output transfer.

device address or an endpoint number. This information is included in the IN or QUT

token packet that initiates the transfer.

Consider an output device connected to a USB hub. which in turn is connected
to a host computer. An example of an output operation is shown in Figure 4.46. The
host computer sends a token packet of type OUT to the hub. followed by a data packet
containing the output data. The PID field of the data packet identifies it as data packet
number 0. The hub verifies that the transmission has been error {ree by checking the

17O Device

ACK

ACK

4.7 STANDARD VO INTERFACES

error control bits, then sends an acknowledgment packet (ACK) back to the host. The
hub forwards the token and data packets downstream. All /O devices receive this
sequence of packets, but only the device that recognizes its address in the token packet
accepts the data in the packet that follows. After verifying that trunsmission has been
error free. it sends an ACK packet to the hub.

Successive data packets on a full-speed or low-speed pipe carry the numbers 0 and
I. alternately. This simplities recovery from transmission errors. If a token. data. or
acknowledgment packet is lost as a result of a transmission ervor. the sender resends
the entire sequence. By checking the data packet number in the PID ficld. the receiver
can detect and discard duplicate packets. High-speed data packets are sequentially
numbered 0. 1. 2. 0. and so on.

Input operations follow a similar procedure. The host sends a woken packet of type
IN containing the device address. In effect. this packet is a poll asking the device to
send any input data it may have. The device responds by sending a data packet followed
by an ACK. If it has no data ready. it responds by sending a negative acknowledgment
(NAK) instead.

In carlier discussion. we pointed out that a bus that has a mix of full/low-speed links
and high-speed links uses the split-traffic mode of operation in order not to delay mes-
sages on high-speed links. In such cases. an IN or an OUT packet intended for a full- or
low-speed device is preceded by a special control packet that starts the split-traffic mode.

This discussion should give the reader an idea about the data transfer protocols
used on the USB. There are many different ways in which such transactions take place
and many protocol rules governing the behavior of the devices involved. A detailed
description of these protocols can be found in the USB specification document {3].

Isochronous Traffic on USB

One of the key objectives of the USB is to support the transfer of isochronous data.
such as sampled voice. in a simple manner. Devices that generate or receive isochronous
data require a time reference to control the sampling process. To provide this reference.
transmission over the USB is divided into frames of equal length. A frame is 1 ms long
for low- and full-speed data. The root hub generates a Start Of Frame control packet
(SOF) precisely once every | ms to mark the beginning of a new frame.

The arrival of an SOF packet at any device constitutes a regular clock signal that
the device can use for its own purposes. To assist devices that may need longer periods
of time. the SOF packet carries an 11-bit frame number. as shown in Figure 4.47a. Fol-
lowing each SOF packet. the host carries out input and output transfers for isochronous
devices. This means that each device will have an opportunity for an input or output
transfer once every I ms.

The main requirement for isochronous traffic is consistent timing. An occasional
error can be tolerated. Hence. there is no need to retransmit packets that are lost or to
send acknowledgments. Figure 4.475 shows the first two transmissions following SOF.
A control packet carrying device address 3 is followed by data for that device. This
may be input or output data. depending on whether the control packet is an IN or OUT
control packet. There is no acknowledgment packet. The next transmission sequence
is for device 7.

read. Why is this important?

281

R T R T L Py S RV O TV P PR P IeY

4.2 Write a program that displays the contents of 10 bytes of the main memory in hexadec-

mlm] format on a video display. Use either the assembler instructions of a processor
of your choice or pseudo-instructions. Start at location LOC in the memory, and use
two hex characters per byte. The contents of successive bytes should be separated by a
space.

4.3 The address bus of a computer has 16 address lines. Ajs_q. If the address assigned to
one device is 7TCA44 and the address decoder for that device ignores lines Ag and Ay.
what are all the addresses to which this device will respond?

4.4 What is the difference between a subroutine and an interrupt-service routine?

4.5

The discussion in this chapter assumed that interrupts are not acknowledeed until the
current machine instruction completes execution. Consider the possibililyh()f suspend-
ing operation of the processor in the middle of executing an instruction in order to
acknowledoe an interriint Dicenice the diffiorltine t1haf o ore o

